Combinatorial proofs of some Stirling number formulas

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Proofs for Some Stirling Number Identities

We present computer-generated proofs of some summation identities for (q-)Stirling and (q-)Eulerian numbers that were obtained by combining a recent summation algorithm for Stirling number identities with a recurrence solver for difference fields.

متن کامل

Combinatorial proofs of some formulas for triangular tilings

We provide requested combinatorial proofs of some formulas involving numbers which enumerate the tilings of a 2 × n triangular strip with triangles.

متن کامل

Combinatorial proofs of some limit formulas involving orthogonal polynomials

The object of this paper is to prove combinatorially several (13 of them) limit formulas relating different families of hypergeometric orthogonal polynomials in Askey’s chart classifying them. We first find a combinatorial model for Hahn polynomials which, as pointed out by Foata at the ICM (1983), “contains” models for Jacobi, Meixner, Krawtchouk, Laguerre and Charlier polynomials. Seven limit...

متن کامل

Combinatorial Proofs of Addition Formulas

In this paper we give a combinatorial proof of an addition formula for weighted partial Motzkin paths. The addition formula allows us to determine the LDU decomposition of a Hankel matrix of the polynomial sequence defined by weighted partial Motzkin paths. As a direct consequence, we get the determinant of the Hankel matrix of certain combinatorial sequences. In addition, we obtain an addition...

متن کامل

Some Inversion Formulas and Formulas for Stirling Numbers

In the paper we present some new inversion formulas and two new formulas for Stirling numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure Mathematics and Applications

سال: 2015

ISSN: 1788-800X

DOI: 10.1515/puma-2015-0009